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Appendix: The Laplace Transform 
 
The Laplace transform is a powerful method that can be used to solve differential 
equation, and other mathematical problems. Its strength lies in the fact that it allows the 
transformation of a differential equation to an algebraic equation. 
 
The one-sided Laplace transform is defined as follows 
 
 X s( ) ≡ L x t( )⎡⎣ ⎤⎦ = x t( )e− stdt,

0

∞

∫  (I.1) 

  
where the variable s  is defined as containing both a real and imaginary part, i.e., 
s = σ + iω  with σ ≥ 0  such that e− st  remains finite as t→∞ . Referring to equation (I.1) 
we say that “ X s( )  is the Laplace transform of x t( ) ”. We also assumed that the time 
variable t  starts at 0, but this could be changed to any other value (e.g., t0 ). 
 
For example, we calculate the Laplace transform of a few simple functions 
 

 
L A[ ] = Ae− stdt

0

∞

∫ = −
A
s
e− st

0

∞
=
A
s
, s > 0

L e−at⎡⎣ ⎤⎦ = e−ate− stdt = −
1

s + a
e− s+a( )t

0

∞

∫
0

∞

=
1

s + a
, s > −a.

 (I.2) 

 
A particularly important transform is that of an impulse of time duration τ  defined as  
 

 
x t( ) = 1

τ
, 0 < t < τ

= 0, t > τ
 (I.3) 

 
with  
 

 X s( ) = 1
τ

e− stdt = −
1
sτ
e− st

0

τ

∫
0

τ

=
1
sτ
1− e− sτ( ).  (I.4) 

 
If we now take the limit of equation (I.4) when τ → 0 , we get 
 

 lim
τ→0

X s( ) = 1
sτ
1− 1− sτ[ ]( ) = 1. (I.5) 

 
The limit of a function such as x t( ) , defined in equation (I.3), when the duration of the 
impulse is taken to be infinitely small while keeping the area of the impulse constant is 
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called a Dirac or delta function. It is usually simply written as δ t( ) , and has the 
property that δ t( ) = 0  for t ≠ 0  and δ t( ) = ∞  for t = 0 , but 
 
 δ t − t0( )dt = 1.

−∞

∞

∫  (I.6) 

 
Equally important is the transform of a step or Heaviside function, represented by  
 

 
H t( ) = 1, t > 0

= 0, t < 0.
 (I.7) 

 
Since our definition of the Laplace transform truncates any functions that are non-zero 
for t < 0 , the Laplace transform of the step function was evaluated in equation (I.2) and 
found to be 
 

 L H t( )⎡⎣ ⎤⎦ =
1
s
.  (I.8) 

  
The list of transforms appearing in Table I.1 can be similarly verified. 
 

Table I.1 – Laplace transform pairs 
 

L Aδ t( )⎡⎣ ⎤⎦ = A, s > 0

L AH t( )⎡⎣ ⎤⎦ =
A
s
, s > 0

L e−atH t( )⎡⎣ ⎤⎦ =
1

s + a
, s > −a

L tnH t( )⎡⎣ ⎤⎦ =
n!
sn+1

, s > 0, n = 1,2,3, ...

L tne−atH t( )⎡⎣ ⎤⎦ =
n!

s + a( )n+1
, s > −a, n = 1,2,3, ...

L sin ωt( )H t( )⎡⎣ ⎤⎦ =
ω

s2 +ω 2 , s > 0

L cos ωt( )H t( )⎡⎣ ⎤⎦ =
s

s2 +ω 2 , s > 0

L e−at sin ωt( )H t( )⎡⎣ ⎤⎦ =
ω

s + a( )2 +ω 2
, s > −a

L e−at cos ωt( )H t( )⎡⎣ ⎤⎦ =
s + a

s + a( )2 +ω 2
, s > −a.
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The Laplace transform also possesses other important properties, some of which are 
(assuming that every time function is zero for t < 0  in what follows) 
 

I. Linearity. If A  and B  are constants 
 
 L Ax t( ) + By t( )⎡⎣ ⎤⎦ = AX s( ) + BY s( )  (I.9) 
 

II. Transform of derivatives. 
 

 
L

dx t( )
dt

⎡
⎣⎢

⎤
⎦⎥
=

dx t( )
dt0

∞

∫ e− stdt = x t( )e− st
0

∞
+ s x t( )e− st dt

0

∞

∫
= sX s( )− x 0( )

 (I.10) 

 
where we integrated by parts, and x 0( )  is the initial condition x t( ) . Similarly, 
the transform of higher derivatives can be shown to give 

 

 
L

d 2x t( )
dt 2

⎡

⎣
⎢

⎤

⎦
⎥ = s

2X s( )− sx 0( )− dx t( )
dt t=0

L
dnx t( )
dtn

⎡

⎣
⎢

⎤

⎦
⎥ = s

nX s( )− sn−k
d k−1x t( )
dt k−1k=1

n

∑
t=0

 (I.11) 

 
III. Transform of primitive of functions. 

 

 

L x τ( )dτ
0

t

∫⎡⎣⎢
⎤
⎦⎥
= x τ( )dτ

0

t

∫{ }e− st dt0

∞

∫
= − 1

s
x τ( )dτ

0

t

∫{ }e− st 0∞ + 1s x t( )e− st dt
0

∞

∫
=
X s( )
s

+ 1
s

x τ( )dτ
0

t

∫{ }
t=0

 (I.12) 

  
where we again integrated by parts. The transform of higher primitives is given by 
 

 L ...∫ x τ( ) dτ( )n∫⎡
⎣

⎤
⎦ =

X s( )
sn

+ 1
sn−k+1

...∫ x τ( ) dτ( )k∫{ }
k=1

n

∑
t=0

 (I.13) 

 
IV. Time shifting. Since x t( ) = 0  for t < 0 , we can write 
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L x t − τ( )⎡⎣ ⎤⎦ = x t − τ( )e− stdt
0

∞

∫ = x t − τ( )e− stdt
τ

∞

∫
= x λ( )e− s λ+τ( )dλ = e− sτ x λ( )e− sλdλ

0

∞

∫0

∞

∫
= e− sτX s( )

 (I.14) 

 
where we made the substitution λ = t − τ . 
 

V. Multiplication by an exponential. 
 

 
L e−at x t( )⎡⎣ ⎤⎦ = e−at x t( )e− stdt =

0

∞

∫ x t( )e− s+a( )tdt
0

∞

∫
= X s + a( )

 (I.15) 

 
The residue theorem 
 
Once a function or an equation has been transformed in the Laplace domain, then 
modified for one purpose or another, it will eventually need to be transformed back to the 
time domain. Although an inverse Laplace transform can be mathematically defined, it is 
always more convenient and easier to use the so-called residue theorem to go from the 
Laplace to the time domain. This theorem is stated as follows. Given a function X s( ) , 

for which the denominator can be written as a product of factors of the type s + aj( )m  
(where aj  is called a pole of order m), we can write 
 

 
x t( ) = L−1 X s( )⎡⎣ ⎤⎦

= 1
m −1( )! lims→−aj

dm−1

dsm−1
s + aj( )m X s( )est⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟j=1

n

∑ , t > 0
 (I.16) 

 
where n is the number of poles in the denominator of X s( ) , and the quantity in between 
the curly braces is called the residue of X s( )est  at the pole aj  of order m. Let’s consider 
a few examples 
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x t( ) = L−1 1
s + a

⎡
⎣⎢

⎤
⎦⎥
= lim

s→−a

1
0!
d 0

ds0
s + a( ) ⋅ est

s + a
⎡

⎣
⎢

⎤

⎦
⎥

= e−at , t > 0

x t( ) = L−1 1
s + a( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= lim
s→−a

1
1!
d1

ds1
s + a( )2 ⋅ est

s + a( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= te−at , t > 0

 (I.17) 

 
and finally 
 

 

x t( ) = L−1 s + a
s + a( )2 +ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= L−1

s + a
s + a − iω( )( ) s + a + iω( )( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= lim
s→−a+ iω

1
0!
d 0

ds0
s + a − iω( )( ) s + a( )

s + a( )2 +ω 2
est

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ lim
s→−a− iω

1
0!
d 0

ds0
s + a + iω( )( ) s + a( )

s + a( )2 +ω 2
est

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
iωe −a+ iω( )t

2iω
+
−iωe −a− iω( )t

−2iω
= e−at cos ωt( ), t > 0.

 (I.18) 

 
These results can be verified against the examples presented in Table I.1. 
 
Application to the damped oscillator problem 
 
Let’s now solve a few cases involving the equation of motion of a damped oscillator with 
different types of driving input. The equation to solve is 
 
 

 
x t( ) + 2β x t( ) +ω0

2x t( ) = f t( )  (I.19) 
 

I. f t( ) = Aδ t( ) . 
 
  L x t( ) + 2β x t( ) +ω0

2x t( )⎡⎣ ⎤⎦ = L f t( )⎡⎣ ⎤⎦  (I.20) 
 

Using the linearity property of the Laplace transform and Table I.1, we get 
 

  s
2X s( ) − sx0 − x0( ) + 2β sX s( ) − x0( ) +ω0

2X s( ) = A,  (I.21) 
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or 

 
  X s( ) s2 + 2βs +ω0

2( ) = A + x0 s + 2β( ) + x0 . (I.22) 
 

In everything that will follow, we will assume that  x0 = x0 = 0 . We now solve 
equation (I.21) 
 

 

X s( ) = A
s2 + 2βs +ω0

2

=
A

s + β − β 2 −ω0
2( )( ) s + β + β 2 −ω0

2( )( )
 (I.23) 

 
We now use the residue theorem stated in equation (I.16) 
 

 

x t( ) = A e
− β− β2 −ω0

2( )t

2 β 2 −ω0
2
−
e
− β+ β2 −ω0

2( )t

2 β 2 −ω0
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= A
e−βt

2 β 2 −ω0
2
e β2 −ω0

2 t − e− β2 −ω0
2 t⎡

⎣⎢
⎤
⎦⎥, t > 0

 (I.24) 

 
A close examination of equation (I.24) shows that the response of the damped 
oscillator to a Dirac function is nothing more than the complementary solution of 
the equation of motion. In the case of the underdamped oscillator (β 2 <ω0

2 ), we 
find that 
 

 x t( ) = A e
−βt

ω1

sin ω1t( ), t > 0  (I.25) 

 
with ω1 = ω0

2 − β 2 .  
 

II. f t( ) = AH t( )  
 
In this case, we have (assuming that β 2 <ω0

2 , and ω1 = ω0
2 − β 2 ) 

 

 X s( ) s2 + 2βs +ω0
2( ) = A

s
 (I.26) 
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Figure I.1 – Response to a Dirac function driving input.   
 

 

x t( ) = A
s s2 + 2βs +ω0

2( )
=

A
s s + β − iω1( )( ) s + β + iω1( )( )

= A
1

ω0
2 +

e− β− iω1( )t

2iω1 iω1 − β( ) +
e− β+ iω1( )t

2iω1 iω1 + β( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= A
1

ω0
2 −

e−βt

ω1 β 2 +ω1
2
cos ω1t −φ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, t > 0

 (I.27) 

 
  with  
 

 φ = tan−1 β
ω1

⎛
⎝⎜

⎞
⎠⎟
. (I.28) 

 
 

 
 

Figure I.2 – Response to a step function as driving input. 
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The Laplace transform can be systematically applied to more complicated types of 
problems and driving functions (periodic or not). It is also important to realize that the 
solution to a given problem provided by the application of the Laplace transform 
includes both the complementary and the particular solutions. 
 
The Two-sided Laplace Transform 
 
It is generally the case in physics that a function is not limited to t ≥ 0  but can exist for 
times both positive and negative. We can then generalize the one-sided Laplace transform 
given in equation (I.1) with its two-sided version   
 
 X s( ) = x t( )e− st dt

−∞

∞

∫ .   (I.29) 

 
Using our previous notation for the one-sided transform 
 
 L x t( )⎡⎣ ⎤⎦ s( ) = x t( )e− st dt

0

∞

∫   (I.30) 

 
we can write for the two-sided transform 
 

 

 

X s( ) = x t( )e− st dt
0

∞

∫ + x t( )e− st dt
−∞

0

∫
= L x t( )⎡⎣ ⎤⎦ s( )

t>0
  

+ L x −t( )⎡⎣ ⎤⎦ −s( )
t<0

  
.   (I.31) 

 
In equation (I.30) we made the dependency of the Laplace transform on the parameter s  
explicit by adding ‘ s( ) ’ to the left-hand side. The last term on the right-hand side of the 
second of equations (I.31) can be ascertained with (using λ = −t )  
 

 

L x −t( )⎡⎣ ⎤⎦ −s( ) = x −t( )est dt
0

∞

∫
= − x λ( )e− sλ dλ

0

−∞

∫
= x λ( )e− sλ dλ

−∞

0

∫ .

  (I.32) 

 
For example, if we calculate the two-sided Laplace transform of the following function 
 

 x t( ) = −e2t , t < 0
−e−3t , t ≥ 0

⎧
⎨
⎪

⎩⎪
  (I.33) 

 
we find (using Table I.1) 
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X s( ) = − 1
−s + 2

s<2
!

− 1
s + 3
s>−3
!

= 5
s2 + s − 5

, for − 3< s < 2.

  (I.34) 

 
We must also determine the proper relation to calculate inverse Laplace transforms for 
two-sided functions. Using equation (I.32) and the residue theorem for one-sided 
functions (i.e., equation (I.16)) we can write 
 

 
x −t( ) = L−1 X −s( )⎡⎣ ⎤⎦

= 1
m −1( )! lims→−aj

dm−1

dsm−1
s + aj( )m X −s( )est⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟j=1

n

∑ , t > 0.
  (I.35) 

 
We can now look at negative time values by changing t→−t , and 
 

 x t( ) = 1
m −1( )! lims→−aj

dm−1

dsm−1
s + aj( )m X −s( )e− st⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟j=1

n

∑ , t < 0.  (I.36) 

 
We finally also change s→−s  to find 
 

 

x t( ) = 1
m −1( )! lims→aj

dm−1

d −s( )m−1
−s + aj( )m X s( )est⎡

⎣⎢
⎤
⎦⎥

⎛

⎝⎜
⎞

⎠⎟j=1

n

∑

= 1
m −1( )! lims→aj

1
−1( )m−1

dm−1

dsm−1
−1( )m s − aj( )m X s( )est⎡

⎣⎢
⎤
⎦⎥

⎛

⎝⎜
⎞

⎠⎟j=1

n

∑

= − 1
m −1( )! lims→aj

dm−1

dsm−1
s − aj( )m X s( )est⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟j=1

n

∑ , t < 0.

  (I.37) 

 
That is, the inverse Laplace transform for a function defined only for times t < 0  is 
similar to that for a function defined for t > 0 , except for the overall negative sign. For 
example, if we calculate the inverse Laplace transform of equation (I.34) we find 
 

 
x t( ) = −

5 s − 2( )
s2 + s − 5

e2tH −t( ) + 5 s + 3( )
s2 + s − 5

e−3tH t( )
= −e2tH −t( )− e−3tH t( ),

  (I.38) 

 
which is the same as equation (I.33). 
 
Finally, we note that because the two-sided Laplace transform consists of an integral 
performed over the domain −∞ < t < ∞  the dependencies on derivatives and integrals 



X 

evaluated at t = 0  (see equations (I.11) and (I.13)) do not appear in the results of 
calculations. Notably we have 
 

 

dx t( )
dt

⎡
⎣⎢

⎤
⎦⎥

n

−∞

∞

∫ e− stdt = snX s( )

...∫ x τ( ) dτ( )n∫{ }e− st dt−∞

∞

∫ =
X s( )
sn

.

  (I.39) 

 
  


